4/CHE-252 (Th) Syllabus-2023

2025

(May-June)

FYUP: 4th Semester Examination

CHEMISTRY

(Physical Chemistry—I)

(CHE-252)

(Theory)

Marks : 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. (a) Describe P-V isotherm of CO_2 with the help of a diagram at varying temperatures.
 - (b) Write the expression for—
 - (i) most probable velocity;
 - (ii) root mean square velocity.

Also mention the differences between them. 2+2+2=6

D25/1289

(Turn Over)

6

(2	
•	_	- 1

(3)

(Turn Over)

	(c)	Write notes on the following: (i) Collision diameter (ii) Collision number	2×2=4	(b)	Calculate the amount of heat supplied to Carnot's cycle working between 368 K and 288 K if the maximum work obtained is 895 joules.	3
	(d)	Calculate the average velocity of SO ₂ at 427 °C. [Given : $R = 8 \cdot 314 \text{ J-K}^{-1} \text{ mol}^{-1}$		(c)	Differentiate between the following: 2×2: (i) Helmholtz free energy	=4
		OR			(ii) Gibbs free energy	
2.	(a)		to of	(d)	Derive Gibbs-Helmholtz equation.	5
		energies.	6	(e)	State the first law of thermodynamics mentioning its limitations. 1+2s	=3
	(b)	Discuss the principle of equipartition of energy.	on 4			
	(c)	Discuss the effect of temperature and pressure on the following: (i) Collision frequency (ii) Mean free path	3+3=6	1. (a)	Prove that in a reversible process net entropy change for the system and surroundings is zero.	3
	(c) (d)	pressure on the following: (i) Collision frequency	3+3=6 4 ch ve	(b)	Prove that in a reversible process net entropy change for the system and surroundings is zero. Calculate the maximum efficiency of a steam engine operating between 110 °C and 25 °C.	3
	(d)	pressure on the following: (i) Collision frequency (ii) Mean free path Calculate the temperature at which the hydrogen molecules will have an average velocity of 176400 cm s ⁻¹ [Given: $R = 8.314 \text{ J-K}^{-1} \text{ mol}^{-1}$]	3+3=6 ch ve 1 . 3		Prove that in a reversible process net entropy change for the system and surroundings is zero. Calculate the maximum efficiency of a steam engine operating between	
		pressure on the following: (i) Collision frequency (ii) Mean free path Calculate the temperature at which the hydrogen molecules will have an average velocity of 176400 cm s ⁻¹ [Given: $R = 8.314 \text{ J-K}^{-1} \text{ mol}^{-1}$] State and explain Carnot theorem. How can the efficiency of a heat engine.	3+3=6 2h ye 1 3	(b)	Prove that in a reversible process net entropy change for the system and surroundings is zero. Calculate the maximum efficiency of a steam engine operating between 110 °C and 25 °C. How does Gibbs' free energy vary with	3
	(d)	pressure on the following: (i) Collision frequency (ii) Mean free path Calculate the temperature at which the hydrogen molecules will have an average velocity of 176400 cm s ⁻¹ [Given: $R = 8.314 \text{ J-K}^{-1} \text{ mol}^{-1}$] State and explain Carnot theorem. How can the efficiency of a heat engine to the increase 10 .	3+3=6 2h ye 1 3	(b)	Prove that in a reversible process net entropy change for the system and surroundings is zero. Calculate the maximum efficiency of a steam engine operating between 110 °C and 25 °C. How does Gibbs' free energy vary with temperature and pressure?	3

(Continued) D25/1289

Write three points differences of **5.** (a) metallic and electrolytic between conductors.

3

3

If molar conductivities at infinite dilution of NaCl, HCl and CH3COONa are-

126.4, 426.1 and $91.0 \Omega^{-1}$ cm²mol⁻¹ respectively, what will be that of CH3COOH?

What are specific conductance and equivalent conductance? Explain how they vary with dilution for strong and weak electrolyte. 3+4=7

Derive Ostwald's dilution law. What are its uses and limitations? 3+2=5

OR

- (a) Describe the moving boundary method for the determination of transport numbers.
 - Discuss the curves obtained bv conductometric titration of-
 - (i) a strong acid with a weak base;
 - (ii) a weak acid with a strong base.

 $3 \times 2 = 6$

The equivalent conductance of a very dilute solution of NaNO3 at 18 °C is $105.2 \,\Omega^{-1}$ cm². If the ionic conductance of NO3 ion in the solution is $61.7 \Omega^{-1} \text{ cm}^2$, calculate the transport number of Na⁺ ions in the solution.

Explain the following: $3 \times 2 = 6$

(i) Asymmetric effect

(ii) Electrophoretic effect

- What is meant by electrochemical **7.** (a) series? Explain why zinc (Zn) reacts with H2SO4 to give H2 but silver does not. 2+2=4
 - Briefly explain the different types of reversible electrodes.
 - Write the cell reaction and calculate E° for the cell

$$Zn |Zn^{2+} (1 M)| |Fe^{3+} (1 M)| Fe^{2+}, Pt$$

Given.

$$E_{\text{Fe}^{3+}/\text{Fe}^{2+}}^{\circ} = +0.77 \text{ V}$$

$$E_{\text{Zn}^{2+}/\text{Zn}}^{\circ} = -0.76 \text{ V}$$

2+3=5

2

4

D25/1289

- (d) Derive the relation between e.m.f. of a cell with the following thermodynamic parameters of a cell reaction: 2+2+2=6
 - (i) Free energy
 - (ii) Enthalpy
 - (iii) Entropy

OR

- **8.** (a) Derive Nernst equation for measuring the e.m.f. of the cell.
 - (b) What is an electrochemical cell? Write a representation of an electrochemical cell, using important sign conventions, taking the example of Zn-Cu cell. 2+3=5
 - (c) Represent schematically the cell made up of the following half-cell reactions:

$$\mathrm{Mg} \rightarrow \mathrm{Mg}^{2+} (0 \cdot 01 \, \mathit{M}) + 2e^{-}$$

$$E^{\circ} = +2.34 \text{ V}$$

$$\operatorname{Sn}^{2+}(0\cdot 1M) + 2e^{-} \rightarrow \operatorname{Sn}$$

$$E^{\circ} = -0.136 \,\mathrm{V}$$

Calculate the e.m.f. of the above cell at 25 °C. 2+3=5

- (d) What is liquid junction potential? How can it be minimized? 2+1=3
- (e) What are concentration cells? Mention different types of concentration cells.
 1+2=3

* * *

3